PUBLIC MEETING FOR THE PROPOSED PLAN INTERIM REMEDIAL ACTION

SITE 9

NAVAL AIR STATION BRUNSWICK

AT BRUNSWICK HIGH SCHOOL

JULY 14, 1994

7:00 P.M.

Head Table:

JAMES CARUTHERS, NASB, Environmental Project Manager

CMDR. THOMAS BRUBAKER, USN, Public Works Officer

FRED EVANS, Navy Facilities Engineering Command, Northern Division, Project Manager

BETH WALTER, ABB Environmental Services, Environmental Engineer

ROBERT LIM, U.S. Environmental Protection Agency, Remedial Project Manager

NANCY BEARDSLEY, Maine Department of Environmental Protection

Harold M. Hagopian, RPR-CM Court Reporter

THE REPORTING GROUP
MASON LOCKHART HAGOPIAN & RAMSDELL
Four Fundy Road, Falmouth, Maine
(207) 781-3728

INDEX

Speaker:	Page
Cmdr. Brubaker	3
Mr. Evans	5
Ms. Walter	6
Comments from the Audience:	
Ms. LePage	19
Mr. Whiteside	20
Cmdr. Baldwin	22

1	PROCEEDINGS
2	CMDR. BRUBAKER: Given this small crowd, if
3	everybody can hear me, even though we went to the
4	trouble of having these guys set up a PA system, we'll
5	go without it.
6	Good evening. Welcome to tonight's public meeting
7	to discuss the Navy's proposed plan to address
8	groundwater contamination at Site 9, the Neptune Road
9	Disposal Site at the Brunswick Naval Air Station here in
10	Brunswick. I'm Commander Tom Brubaker, the Public Works
11	Officer at the air station.
12	Working closely with a lot of folks here in the
13	room tonight, and many others, we continue to make
14	progress in the remediation of the sites identified
15	under our Installation Restoration Program. Tonight
16	we're here to talk about an interim remedial action for
17	the groundwater at Site 9. At the conclusion of the
18	technical presentation, we will open the floor to
19	questions and comments from the floor.
20	As tonight's meeting is part of the official public
21	comment period for the proposed interim remedial action,
22	we ask that you limit your comments to Site 9.
23	If you have any other questions regarding any other
24	aspect of our Installation Restoration Program at the
25	base, please hold those until we've closed the formal

1	part of this meeting. We'll be happy to address those
2	afterwards. We'll have folks available to try to field
3	those questions.
4	I also, at this point, should advise you that
5	tonight's proceedings are being transcribed, because it
6	will be part of the official record at the Curtis
7	Memorial Library. The other thing that does is it gives
8	us an accurate record and an ability to respond more
9	accurately to your questions and comments.
10	Tonight I'd like to introduce the other folks that
11	are here at the table with me. To my right is Mr. Jim
12	Caruthers, who is our program manager for installation
13	restoration at the base; Ms. Beth Walter, who works for
14	ABB Environmental Services as the Navy's consultant for
15	the Installation Restoration Program here in Portland;
16	Mr. Fred Evans is our Project Manager from the Naval
17	Facilities Engineering Command, Northern Division, in
18	Philadelphia; to his left is Nancy Beardsley of the
19	Maine DEP; and to her left, Bob Lim of the U.S. EPA,
20	Region 1.
21	We anticipate tonight's presentation to take about
22	30 minutes. If you haven't already gotten a copy of the
23	briefing material for tonight, there are some available
24	on the table in the back.
25	Also, anybody who would like to be on our mailing

1	list, if you're not already on our mailing list, we have
2	a sign-up sheet on the back table. Also tonight we had
3	originally on the agenda it's not up there
4	originally on the agenda, we're going to talk about
5	another initiative that's ongoing right now that might
6	possibly change how we get you, the citizen
7	stakeholders, involved in our process. It's called
8	Restoration Advisory Board. The bottom line there is
9	that it may give other folks who haven't previously had
10	an opportunity to participate, it may give them the
11	opportunity to participate in the process, which are now
12	ongoing.
13	All that said, I'd like to turn the floor over to
14	Fred Evans.
15	MR. EVANS: Thank you, Commander. I'm going to
16	explain the general process for the RI, remedial
17	investigation, FS, feasibility study, and the ROD, the
18	record of decision. We start with a remedial
19	investigation where we determine the type and the
20	distribution of the contamination by taking the soil and
21	water samples from the site and perform a risk
22	assessment which determines the potential risk to human
23	health and environment. And from the risk assessment
24	and the remedial investigation, we go into the
25	feasibility study, where we evaluate different

स्थानकार विकास स्थापन स्थापन स्थापन स्थापन । जन्म स्थापन

詩中でも

1	engineering alternatives and come up with a preferred
2	alternative to reduce the risk at the site
3	Following the feasibility study, we go into the
4	record of decision process, which has four main steps.
5	We have the proposed plan, which is why we're here
6	tonight. The proposed plan is currently on file at the
7	Curtis Memorial Library and is available for everybody
8	to look at. And we hold the public hearing, which we're
9	holding tonight. And the public comment period, which
10	started July 12 and runs for a minimum of 30 days.
11	Following the close of the public comment period, we've
12	got to prepare a ROD and Responsiveness Summary based or
13	the public comment. And then that gets signed by the
14	Navy and EPA to make a to require the Navy to follow.
15	what's in the Record of Decision.
16	Based on that, I'd like to turn it over to Beth
17	Walter to provide the technical presentation.
18	MS. WALTER: Thank you, Fred.
19	As Fred mentioned, we're now at the process of the
20	public hearing describing the Navy's preferred
21	alternative for the interim remedial action at Site 9.
22	Just to familiarize people, Site 9 is located in the
23	central portion of the naval air station.
24	What we're doing here tonight is a little bit
25	different from some of the other proposals the Navy has

1	put forth in that the Navy is recommending an interim
2	action. And by that, I'd just like to stress that it's
3	not intended to be the final remedy for Site 9. And the
4 ⁷	reason that the Navy is proceeding with this interim
5	action is because currently there is not enough
6	information to develop a final remedial strategy. We
7	haven't determined where the source areas or areas of
8	groundwater contamination at the site might be. Without
9	that information, we're unable to develop alternatives
10	that address the long-term groundwater contamination.
11	Also, by implementing this interim action, it
12	really does permit the Navy to conduct long-term
13	monitoring at the time site. And what the long-term
14	monitoring program will do is provide an increased data
15 ,.	base on groundwater quality at Site 9, which we're
16	hoping can help us determine some of the potential
17	source areas of contamination. And in the meantime,
18	while the long-term monitoring is going on, the Navy
9	will be conducting additional source investigations.
20	They'll be out at the site exploring other possible
21	areas where the source of groundwater contamination may
22	be.
23	As I mentioned, Site 9 is located in the central
24	portion of the base. In 1984, when the Navy first got
5	involved in officially documenting notential areas of

1	concern at the naval air station, a report was written.
2	And in this report they had identified three potential
3	areas of contamination. These were based on interviews
4	with people who worked at the naval air station and on
5	historical records.
6	The three areas were: the location of an
7	incinerator and ash disposal ash disposal and dump
8 .	area; a reported solvent burning and dumping ground area
9	right outside of Building 201; and two unnamed streams
10	that flow adjacent to Site 9.
11	During the investigations that the Navy has
12	conducted, two other areas of potential concern were
13	identified. And one of those were the septic system
14	associated with Building 201, and an old drainpipe that
15	flows along downgradient of the site of the ash
16	disposal area.
17	Just to briefly review the history of these areas.
18	There was no precise information on the dates of
19	operation of the incinerator, nor on the location of the
20	ash landfill or dump. And reportedly wastes were burned
21 ,	at the incinerator and the ash transported over to the
22	dump disposal. And the waste may include solvents,
23.	paint sludges and solid waste.
24	The solvent burning and dumping area was identified
25	off of an aerial photograph as a potential area of

1	concern. And based on interviews, it was reportedly
2	used to dump and burn solvents.
3	And the two unnamed streams that flow adjacent to
4	the site really drain the central portion of the naval
5	air station, and they collect that, and the groundwater
6	or the surface water then flows down and off base. And
.7	a seep has been identified in the northern unnamed
8	stream.
9	The septic system was in use between 1952, when
10	Building 201 was built, and 1972, when the air station
11	went over to a sewer system, and it consists of a septic
12	tank and five cesspools.
13	And then lastly, the old drainpipe. There's a
14	42-inch drainpipe that runs along the southern boundary
15	of the ash disposal area, and it was identified as a
16	potential concern because if there were contaminants
17	disposed at that landfill, there was a potential for
18	those contaminants to flow towards this drainpipe, and
19	the drainpipe to act as a preferential pathway of
20	contaminant migration.
21	The Navy started to conduct investigations on that
22	site going back to 1988 and 1990. They had two large
23	field programs. And the purpose of those programs were
24	to understand and determine the geology and the
25	hydrology of the site: to evaluate the contaminant

 $\{-\frac{1}{2}e^{\frac{1}{2}}\}$

1	distribution in soils, the surface water, the sediments,
2	the seeps, and in subsurface soils and ash material.
3	And as part of those sampling efforts, groundwater
4	samples, surface water, sediment, seep and soil samples
5	were collected and then analyzed.
6	In 1993 additional investigations were conducted.
7	These investigations were prompted based on comments
8	that there were some data gaps out there. It was done
9	to better evaluate and characterize the ash disposal
10	area. And this is a picture, a blown up picture of this
11	area up here.
12	This was an area that we had not, in our 1988 and
13	1990 investigations, had not really determined where
14	this ash landfill was. In 1993, the Navy went out and
15	conducted an investigation and placed 33 soil borings in
16	a grid pattern along this area, and based on the results
17	of those borings they were able to determine whether or
18	not ash was present below the ground or not.
19	The yellow area is where ash was identified, and it
20	was located between approximately 6 feet to 18 feet
21	below the ground surface. And this area matches up
22	pretty well with the area that had originally been
23	identified in that report that was written in 1984.
24	We also the Navy also took a look at each septic
25	system; went in and actually collected samples from the

1	septic systems to better determine whether or not that
2	was a source of groundwater contamination. And again,
3	samples were collected and analyzed.
4	The results of all three of those investigations
5	identified that the water table at Site 9 is
6	approximately 10 feet below the ground. The groundwater
7	flow is to the south southeast was southerly and then
8	discharges into the two streams. And the groundwater
9	moves approximately 26 feet to 130 feet per year through
10	the site, which is relatively quick.
1	The results of the analytical samples that were
12	collected and sent off-site identified the presence of
13	volatile organic compounds and inorganic compounds in
4	the groundwater downgradient of this ash disposal area
5	and also the septic system.
6	The volatile organic compounds that were detected
17	included vinyl chloride; 1,1-dichloroethane, or DCA; and
.8	1,2-dichloroethene, or DCE. And these compounds, the
.9	DCA and DCE, are used as industrial solvents; and vinyl
20	chloride and DCA and DCE are also degradation products
21	of other more commonly used solvents that are generally
22	used in industrial activities.
23	The inorganic compounds that were detected include
24	aluminum, cadmium, manganese and iron. These were the
25	four inorganic compounds that were detected most

1	nequently and in greater concentrations above typical
2	background concentrations.
3	Overall, what was identified was that of the 13
4	monitoring wells that were placed out there since 1988,
, 5	nine of the wells contained no contaminants at
6	concentrations greater than the drinking water
7	standards, or health-based criteria. Four of the wells,
8	however, did detect contaminants at concentrations
9	greater than the health-based drinking water standards.
10	And those wells are identified as the yellow it's not
11	really showing up too clearly but they're the three
12	wells downgradient of the septic system and the one well
13	located downgradient of the ash disposal. Remember, I
14	said the groundwater is flowing from the north to the
15	south.
16	And the compounds that were detected greater than
17	their drinking water standards include vinyl chloride,
18	DCE, DCA and cadmium. In addition, I mentioned the
19	other inorganic compounds. Aluminum, manganese and iron
20	were detected at concentrations greater than their
21	drinking water standards; however, the drinking water
22	standards for those compounds are based on aesthetic
23	qualities, taste and odor, and not on health-based
24	considerations.
25	The other thing that we identified was that there

1	was no defined pattern of groundwater contamination at
2	the site. And I'll just explain a little bit more what
3	we mean by that.
4	These figures are also in the handout. But the
5	Navy originally installed wells in 1988, and some of
6	those wells have been sampled up to five times. We've
7	also placed wells as recently as 1993, and those wells
8	have only been sampled once. But if you look at the
9	wells that have been sampled for example, in this
10	case, monitoring well 904 you can see that at times
11	when we went out to sample we had detections of vinyl
12	chloride that seemed to increase the next time we
13	sampled it, but then the next two times we sampled it we
14	didn't detect it at all. And we also see that with DCA
15	and DCE. And so, as a result, we're not able to go in
16	and predict with any certainty what concentrations we
17	would expect to see or where we would expect to see
18	them.
19	And I will go back and just mention that it really
20	has only been those four wells that we're seeing
21	contaminants of volatile organic compounds routinely
22	detected.
23	Also, just for to put some of the concentrations
24	that I'm talking about in perspective, here's a chart of
25	the compounds that I have identified; the maximum

1 .	concentrations that we have detected out there. And
2	then, for comparison, the federal MCL, or maximum
3	contaminant level, which is the federal drinking water
4	standard; the MCLG, which is their maximum contaminan
5	level goal; and as important is Maine's maximum exposure
6	guideline, which is a health-based criteria, that is
7	considered to be concentration in drinking water
8	considered to be present with no significant health
9	risks. So you can see that these compounds have been
10	detected in the water greater than their drinking water
11	standards.
12	Although the focus of tonight's meeting really is
13	on the groundwater at Site 9, I do want to just briefly
14	review the results of the contamination in the other
15	media, because it plays into the reason why the Navy is
16	moving forward with their interim remedial action.
17	There is no physical evidence, based on the results
18	of the 1988 or 1990 sampling events, to support a
19	solvent dumping and burning area outside of Building
20	201. I've mentioned that the septic system and
21	cesspools were sampled in 1993. Those samples contained
22	no volatile organic compounds; no vinyl chloride, no DCE
23	or DCA. The compounds were seen in the groundwater.
24	Those compounds were not detected in the soils or the
25	actual organic-rich material in the cesspools.

1 ·	The ash samples, likewise, did not contain any of
2	the volatile organic compounds or PCBs. However, PAH
3	compounds were detected in the ash. PAH compounds are
4	compounds that you find from incomplete combustion. So
5	their presence in ash material is not surprising for us
6	to see.
7	We also detected some low concentrations of
8	pesticides. And in the surface soil samples that were
9	collected around Building 201 we detected no volatile
10	organic compounds or PCBs. We did detect some PAH
l 1	compounds and some low concentrations of pesticides.
12	However, the pesticide concentrations were consistent
13	with historical usage of DDT and pesticides that were
14	used in the 60's and 70's at the naval air station.
15	Surface water samples were collected. They
16	contained no vinyl chloride, DCE or DCA. However,
17	fuel-related volatile organic compounds, such as
18	benzene, toluene, ethylbenzene and xylene, were detected
9 .	in the surface water.
20	Sediment samples, again, did not contain compounds
21	we'd seen in the groundwater; however, PAH compounds
22	were detected.
23	And the seep samples also contained no VOCs, but
24	did contain PAHs and the inorganic compounds, as well as
25	some pesticides.

1	Combining all three of the sampling events, '88,
2	'90 and '93, some of the conclusions that we came to
3	were that vinyl chloride, DCE and DCA are detected in
4	the groundwater out at Site 9 both north and south of
5	Neptune Drive.
6	There was no clear source area or pattern of
7	groundwater contamination that we could identify.
8	The sampling results indicate that the septic
9	system, which was originally thought to be the source of
10	groundwater contamination, and the ash dump area are n
1	current sources of groundwater contamination.
12	And the contaminants are present drinking water
13	standards are exceeded in four of the thirteen wells
! 4	that have been sampled out there. And that we also
15	believe that the ash disposal area may be contributing
16	to the high inorganic compounds that we're detecting in
17	the groundwater.
18	Based on those conclusions, the Navy decided to
19	move forward with interim remedial action. Again, it is
20 .	stressed that it is not intended to be the final remedy
21	for Site 9. It is considered long-term monitoring of
22	the groundwater out at Site 9 is considered to be
23	consistent with whatever final remedy the Navy proposes
24	after collecting additional information, and it will be
25	reevaluated when additional information becomes

1	availab <u>l</u> e.
2	The objectives of the remedial action are to reduce
3	the contaminant concentrations in groundwater to
4	drinking water standards; to ensure protection of human
5	health by limiting future exposure to the groundwater.
6	Currently, the groundwater at the naval air station is
7	not used for any domestic purpose. The naval air
8	station receives their water from the public water
9	supply wells. And also to implement long-term
10	monitoring while continuing to investigate source areas
11	of contaminations.
12	The components of the alternative include long-term
13	monitoring of groundwater, the surface water and
14	sediments in the two unnamed streams, and the seep. And
15	the reason for including all those media is to measure
16	the expected decrease in contaminant concentrations that
17	we expect to see.
18	The Navy will also institute institutional
19	controls, deed and land use restrictions at the site, to
20	prevent the future use of the groundwater.
21	Groundwater will be remediated through natural
22	attenuation or natural degradation processes.
23	And every five years, at a minimum, the Navy will
24	come back with the EPA and DEP and review the data that
25	they have collected.

1	The estimated cost of this alternative is \$434,000,
2	and concurrent with the activities associated with the
3	interim remedial action will be ongoing source
4	investigations.
5	The proposed remedial action commits the Navy to
6	conduct a long-term monitoring, and at a minimum, we're
7	going to see quarterly sampling over the next five
8	years. So that's 20 rounds of groundwater, surface
9	water, sediment and seep samples that will be collected
10	over the next five years.
11	It commits the Navy, the U.S. EPA and the Maine DEI
12	to conduct five-year reviews to evaluate the data and to
13	determine whether or not additional remedial actions are
	warranted.
15	It also you know, as I've been saying, the Navy
16	will be conducting additional investigations at Site 9.
17	And during this time groundwater will be remediated
18	through the natural processes such as degradation, which
19	will reduce the contaminant concentrations in
20	groundwater. And the estimated time to achieve cleanup
21	concentration or drinking water standards with the
22	groundwater is between two and fifteen years.
23	The future actions related to Site 9, once this
24	interim remedial action moves forward, is that the Navy
25	will conduct additional investigations at Site 9: they

1	will implement that long-term monitoring program and
2	start to monitor groundwater, surface water, sediments
3	and the seep.
4	Based on all that information, a final remedial
5	alternative for Site 9 will be developed. And once
6	that's developed, we'll kind of go through this process
7	again. A proposed plan will be written, and a public
8	hearing and public comment period will be held to
9	solicit input from the public on what the Navy is
10	choosing to do or proposes to do for the final
11	remediation at Site 9. And then a final Record of
12	Decision will be prepared and signed.
13	And that ends the technical portion of the
14	presentation. And I'll turn the meeting back over to
15	Commander Brubaker.
16	CMDR. BRUBAKER: At this point I would offer to
17	anyone, if they needed to take a 10-minute break, we
18	could offer it to them at this time. If no one needs a
19	break, we can move forward with the question and commen
20	period.
21	(No response.)
22	I'll open the floor to questions and comments.
23	MS. LePAGE: My name is Carolyn LePage. I'm a
24	geologist with Robert Gerber, Incorporated, in Freeport,
5	Maine We are acting as consultants for the Drungwick

1	Area Citizens for a Safe Environment. And I'm speaking
2	on behalf of the citizens' group tonight. They've asked
3	me to pass along several comments on their behalf.
4	The first is that the citizens' group will be
5	preparing and submitting written comments on the
6	proposed plan within the public comment period.
7	The second is that the citizens' group remains
8	concerned that the additional investigations conducted
9	to identify potential sources be conducted in a timely
10	fashion.
11	And the third comment is that the contaminants
12	affecting the sediments in the stream also be addressed
13	in a timely fashion.
14	CMDR. BRUBAKER: Any other questions or comments?
15	Yes, sir?
16	MR. WHITESIDE: Yes. My name is Haven Whiteside.
17	I live in Brunswick. I have just one question on a
18	technical basis. You said it would be, by natural
19	attenuation, two to fifteen years to reach drinking
20	water standards. How do you since the measurements
21	seem to be kind of scattered around, how do you make
22	that projection?
23	MS. WALTER: That projection was based on
24	groundwater modeling that we had performed, and also on
25	some assemblage about half-lifes of chemicals that are

1	detected and their likely fate. And because there is a
2	lot of uncertainty around whether or not a chemical will
3	degrade in two years or five years, and that each site
4	has a set of unique conditions that are going to affect
5	the rate at which that chemical degrades, and that's why
6	you're seeing a range.
7	I don't really know how familiar you are with
8	groundwater modeling. Actually, two to fifteen years is
9	kind of a tight time frame for some models that we've
10	seen. I don't know if that answers your question. It
11	was based on the groundwater models that were developed
12	in conjunction with the I think the USGS and the U.S.
13	EPA, their approved models that are used at other
14	Superfund sites. And we've applied those models to the
15	conditions we have at Site 9. So that it's based on an
16	estimate.
17	MR. WHITESIDE: My question was based on the idea
18	that apparently you're using models in a static way.
19	You have static information, you apply the model, and
20	you project ahead. And based on your measurements, you
21	don't have any trend to put in the model. Is that
22	correct?
23	MS. WALTER: Right.
24	MR. WHITESIDE: Okay. Thank you.
25	MS. WALTER: And I think one of the things that we

1	recognize is that we don't have any trends. We haven't
2.	seen any trends. As I mentioned, though, some of the
3	wells the data base that we have, that we're working
4	from, you know, can be considered somewhat incomplete in
5	that some of our wells have only been sampled once and
6	some have been sampled up to five times. The long-term
7	monitoring program is going to provide a data base that
8	is going to be a little bit more consistent. We'll be
9	collecting samples on a quarterly basis. We'll get
10	seasonal variations. And I think with time well begin
11	to have a data base that will be more powerful and that
12	we can apply to these models and perhaps refine our
13	estimates.
14	CMDR. BALDWIN: Commander George Baldwin out at
15	South Harpswell. Those two streams, where do they empty
16	into?
17	MS. WALTER: They eventually empty into Mere Brook.
18	MR. CARUTHERS: Yes, they eventually go through a
19	series of unnamed streams on the base, and those streams
20	discharge into the very lower portion of Mere Brook,
21	which discharges into Harpswell Cove and Harpswell
22	Sound.
23	CMDR. BALDWIN: Do we know how much contaminant
24	sir, are flowing through those streams every year?
25	MR. CARUTHERS: These chemicals have not been

1	detected in surface water in that stream.
2	CMDR. BALDWIN: They have not been?
3	MR. CARUTHERS: They have not been.
4	A SPECTATOR: Inorganic contaminants have been?
5	MR. CARUTHERS: Yes.
6	A SPECTATOR: Inorganic contaminants have been
7	found in the stream, you're saying. I don't know if his
8	question was organic or inorganic, or both.
9	CMDR. BALDWIN: I think my question was based on
10	pure ignorance. I don't know. I was just wondering how
11	much contaminants were in those streams that were
12	flowing down through Mere Brook and then into Harpswell
13	Sound.
14	MR. CARUTHERS: Okay, let me rephrase my answer to
15	you. The two portions of the contaminants that are
16	associated with this site, the volatile organics have
17	not been detected in surface water going down through
18	there. The inorganics have been. They're always there.
19	It's just a matter of relative concentrations. The
20	concentrations that we have found on the base in our
21	studies, the concentrations of those chemicals in Mere
22	Brook, are well below drinking water standards.
23	MS. BEARDSLEY: There is also PAH contamination in
24	stream sediments that we haven't quite resolved how
25	that's going to be dealt with. But it's at levels that

1	is fai greater than background.
2	CMDR. BALDWIN: And these will continue? I mean,
3	there's nothing that can be done? They will continue
4	flowing until all of the monitoring is done at the end
5	of five years or fifteen years, or whatever it may be?
6	MR. CARUTHERS: Oh, you're talking you're
7	getting into that's still streams. You're dealing
8	with a number of sources of possible and actual
9	contaminants that are flowing down through there. Site
10	9, which we're discussing here, is only one of a myriad
11	of real or potential sources that are affecting Mere
12	Brook and Harpswell Cove. And we're only talking in
13	this meeting here about the Site 9 issues.
14	CMDR. BALDWIN: Are there eight other sites that
15	are doing the same thing?
16	MR. CARUTHERS: There are there are 13 sites
17	altogether, but they're not all associated with Mere
18	Brook.
19	I think there's nine, if I counted right. Nine of
20	the IR sites that are associated with the Mere Brook
21	drainage area, as well as several non-IR sources of
22	contamination that are associated with Mere Brook.
23	CMDR. BALDWIN: The best and hopeful plan that you
24	have coming out of this monitoring will show a decrease
25	in these contaminants over the years? Do you hope they

1 just go away? Is that what we're looking for? 2 MR. CARUTHERS: Yes. 3 CMDR. BALDWIN: I don't have any other questions. 4 MR. WHITESIDE: Can I ask another question? The 5 report that came out said something about chromium. Was 6 that an error? A typo? 7 MS. WALTER: Do you remember -- I have the report. 8 A SPECTATOR: Isn't there a high chrome in the --9 MS. WALTER: Yeah, there may have been --10 MR. WHITESIDE: Here we are, Table 4-2, Risk 11 Estimates. 12 MS. WALTER: The chromium? 13 MR. WHITESIDE: Yes. 14 MS. WALTER: No, that was detected in the area 15 north of Neptune Drive in samples associated with the 16 ash landfill. So you're right, chromium has been 17 detected in the groundwater. 18 MR. WHITESIDE: Okay. The reason that I asked 19 about that is it had the highest number on this hazard 20 index in this particular table. Could you just talk 21 about that for a minute, please? 22 MS. WALTER: Right. I guess what it would mean, in 23 looking at this data, it would indicate that chromium is 24 an inorganic contaminant of concern and should have been 25 included in that. I don't know off the top of my head

1	what the drinking water standard is for chromium. So
2	I'm not sure whether it's above or below it. But the
3	Navy has recognized that the groundwater beneath Site 9
4	contains chemicals at concentrations that are not safe
5	to drink; and it's based on that fact that the
6	groundwater cannot be used for its intended use that had
7	resulted in the Navy ordering some action.
8	I agree with you on this that chromium has been
·9	detected of Neptune Drive in groundwater. And like I
10	said, I will check into it. And in the public record it
11	will tell you what the drinking water standard is and
12	whether it's above or below it.
13	MR. WHITESIDE: Thank you.
14	CMDR. BRUBAKER: Any other questions or comments?
15	(No response.)
16	That closes the formal part of tonight's
17	presentation.
18	(Public meeting concluded at 7:50 p.m.)
19	
20	
21	
22	
23	
24	
25	

1	CERTIFICATE
2 .	I certify that the foregoing is a true and correct
3	transcription of my stenographic notes taken of the
4	afore-captioned matter, to the best of my skill and
5	ability.
6	
7	
8	
9	Harold M. Hagopian Registered Professional Reporter
10	
11	
12	
13	
14	
15	
16	
17	•
18	
19	
20	
21	
22	
23	
24	